Abstract

The potential of low-frequency ultrasound (LFU) combined with nanotechnology-based formulations in improving skin tumors topical treatment was investigated. The impact of solid lipid nanoparticles (SLN) and hydrophilic nanogels as coupling media on LFU-induced skin localized transport regions (LTR) and the penetration of doxorubicin (DOX) in LFU-pretreated skin was evaluated. SLN were prepared by the microemulsion technique and liquid crystalline nanogels using Poloxamer. In vitro, the skin was pretreated with LFU until skin resistivity of ∼1 KΩ.cm2 using the various coupling media followed by evaluation of DOX penetration from DOX-nanogel and SLN-DOX in skin layers. Squamous cell carcinoma (SCC) induced in mice was LFU-treated using the nanogel with the LFU tip placed 5 mm or 10 mm from the tumor surface, followed by DOX-nanogel application. LFU with nanogel coupling achieved larger LTR areas than LFU with SLN coupling. In LFU-pretreated skin, DOX-nanogel significantly improved drug penetration to the viable epidermis, while SLN-DOX hindered drug transport through LTR. In vivo, LFU-nanogel pretreatment with the 10 mm tip distance induced significant tumor inhibition and reduced tumor cell numbers and necrosis. These findings suggest the importance of optimizing nanoparticle-based formulations and LFU parameters for the clinical application of LFU technology in skin tumor treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.