Abstract

The porosity (epsilon), the tortuosity (tau), and the hindrance factor (H) of the aqueous pore channels located in the localized transport regions (LTRs) and the non-LTRs formed in skin treated simultaneously with low-frequency ultrasound (US) and the surfactant sodium lauryl sulfate (SLS), were evaluated for the delivery of four hydrophilic permeants (urea, mannitol, raffinose, and inulin) by analyzing dual-radiolabeled diffusion masking experiments for three different idealized cases of the aqueous pore pathway hypothesis. When epsilon and tau were assumed to be independent of the permeant radius, H was found to be statistically larger in the LTRs than in the non-LTRs. When a distribution of pore radii was assumed to exist in the skin, no statistical differences in epsilon, tau, and H were observed due to the large variation in the pore radii distribution shape parameter (3 A to infinity). When infinitely large aqueous pores were assumed to exist in the skin, epsilon was found to be 3-8-fold greater in the LTRs than in the non-LTRs, while little difference was observed in the LTRs and in the non-LTRs for tau. This last result suggests that the efficacy of US/SLS treatment may be enhanced by increasing the porosity of the non-LTRs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call