Abstract

Isolated rat mesenteric arteries were incubated with lipopolysaccharide (LPS) for 6 h and then mounted in an organ bath to investigate their responses to various relaxants. Exposure to LPS moderately reduced acetylcholine (ACh)-induced endothelium-dependent relaxation (EDR), and markedly reduced sodium nitroprusside (SNP)-induced endothelium-independent relaxation (EIR). It did not affect ACh-induced EDR under treatment with a nitric oxide synthase (NOS) inhibitor, which is mediated by an endothelium-derived hyperpolarizing factor (EDHF), and forskolin-induced EIR. N-(3-(Aminomethyl)benzyl)acetamidine (1400 W), an inducible nitric oxide synthase (iNOS) inhibitor, actinomycin D, an RNA polymerase inhibitor, cycloheximide, a protein synthesis inhibitor, and dexamethazone reduced the nitric oxide (NO) production and reversed the reduced ACh-induced EDR and SNP-induced EIR. In LPS-treated mesenteric artery, L-arginine-induced relaxation was not affected by removal of endothelium, indicating muscular inducible nitric oxide synthase (iNOS) induction. Pre-exposure to SNP (NO donor) also moderately reduced ACh-induced EDR and markedly reduced SNP-induced EIR with little effect on ACh-induced EDHF-mediated EDR. In conclusion, in vitro exposure to LPS desensitized vascular smooth muscle cells to endogenous and exogenous NO by overproduction of muscular iNOS-derived NO, and an iNOS inhibitor and iNOS induction inhibitors prevented the LPS-induced desensitization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.