Abstract

A halotolerant marine strain PHKT of Halomonas venusta was isolated from contaminated seawater as an efficient biosurfactant producer candidate, on low-value substrate (glycerol). The produced biosurfactants (Bios-PHKT) were characterized as lipopeptides molecules, belonging to surfactin and pumilacidin families, by using Thin Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FT-IR) and Tandem Mass Spectrometry (MALDI-TOF/MS-MS). Bios-PHKT has a critical micelle concentration (CMC) of 125 mg/L, and showed a high steadiness against a wide spectrum of salinity (0–120 g/L NaCl), temperature (4–121 °C) and pH (2–12), supporting its powerful tensioactive properties under various environmental conditions. Likewise, the cytotoxic test revealed that the biosurfactant Bios-PHKT, at concentrations lower than 125 µg/mL, was not cytotoxic for human HEK-293 cells since the cell survival is over than 80%. Furthermore, Bios-PHKT lipopeptides showed excellent anti-adhesive and anti-biofilm activities, being able to avoid and disrupt the biofilm formation by certain pathogenic microorganisms. In addition, the biosurfactant Bios-PHKT showed a remarkable anti-proliferative activity towards tumor B16 melanoma cell line. Besides, Bios-PHKT exhibited an excellent in vitro and in vivo wound healing process. In light of these promising findings, Bios-PHKT could be successfully used in different biotechnological applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call