Abstract

Melanin is a complex brown pigment, primarily responsible for the skin pigmentation. Therefore, cosmetic industries have always been in search of potent oxidative enzymes useful for melanin degradation, and to promise a fair complexion after using their products. In the present study, lignin peroxidase from Pseudomonas fluorescence LiP-RL5 isolate has been immobilized on super-paramagnetic nanoparticles to enhance its stability and reusability. The chitosan coated enzyme-nanomaterial complex (LiP@MFO-Chit) showed higher melanin decolorization (47.30 ± 2.3 %) compared to the graphene oxide coated nanoparticles (LiP@MFO-GO) (41.60 ± 1.6 %). Synthesized enzyme nanoparticle complexes showed microbicidal effect on skin infection causing pathogen, Pantoea agglomerans with an inhibitory zone of 6.0 ± 0.9 mm and 250 µg/100 µl minimum inhibitory concentration, and a 7.0 ± 1.5 mm zone and 170 µg/100 µl MIC for LiP@MFO-GO and LiP@MFO-Chit, respectively. Antioxidant potential of LiP@MFO-Chit and LiP@MFO-GO nano-conjugates showed a substantial DPPH scavenging activity of 75.7 % and 88.3 %, respectively. Therefore, LiP-nanoparticle hybrid complexes analyzed in this study are not only effective as skin whitening agents but they are potential molecules against various microbial skin infections as well as useful for different other biomedical applications like biorefinery, drug delivery, and dermatology, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call