Abstract

The relationship between CDOM (Chromophoric dissolved organic matter) and the bacterial community was investigated in ice-covered Baiyangdian Lake. The results showed that environmental parameters significantly differed in Baiyangdian Lake, whereas a-diversity was not significantly different. Moreover, the microbial and functional communities exhibited significant differences, and T (Temperature), pH, ORP (Oxidation-reduction potential), DO (Dissolved oxygen), NO3−-N, NH4+-N, and Mn (Manganese) were the main environmental factors of these differences, based on redundancy analysis and the Mantel test. Biomarkers of the microbial and functional communities were investigated through linear discriminant analysis effect size and STAMP analysis. The number of biomarkers in the natural area was highest among the typical zones, and most top functions were related to carbohydrate metabolism. Two protein-like components (C1 and C2) and one humic-like component (C3) were identified by parallel factor analysis, and C1 was positively related to C2 (R = 0.99, p < 0.001), indicating the same sources. Moreover, CDOM significantly differed among the typical zones (p < 0.001). The high biological index, fluorescence index, β:α, and low humification index indicated a strong autochthonous component and aquatic bacterial origin, which was consistent with the results of UV-vis absorption spectroscopy. Network analysis revealed non-random co-occurrence patterns. The bacterial and functional communities interacted closely with CDOM. The dominant genera were CL500-29_marine_group, Flavobacterium, Limnohabitans, and Candidatus_Aquirestis. Random forest analysis showed that C1, C2, and C3 are important predictors of α- and β-diversity in the water bacterial community and its functional composition. This study provides insight into the interaction between bacterial communities and DOM (Dissolved organic matter) in ice-covered Baiyangdian Lake.

Highlights

  • Bacteria, acted as important components of ecosystems, playing a crucial roles in nutrient cycles [1]

  • The functional community significantly differed among the typical zones in Baiyangdian Lake (Adonis, p > 0.05; multi-response permutation procedure (MRPP), p < 0.05; Anosim, p < 0.05)

  • The results showed that the environmental parameters, microbial community, and functional community significantly differed among the typical zones in Baiyangdian Lake, whereas a-diversity did not (p > 0.05)

Read more

Summary

Introduction

Bacteria, acted as important components of ecosystems, playing a crucial roles in nutrient cycles [1]. Fluorescence measurements of CDOM, based on EEM-PARAFAC analysis, exhibited further advantages in characterizing the spectral properties and sources of CDOM [3] The effectiveness of this technique in water quality analysis has been demonstrated in studies of lakes [4], estuaries [5], rivers [6], and reservoirs [7,8]. The specific relationship between the composition of CDOM and bacterial community structure and functional composition in Baiyangdian Lake in northern China is unclear. Previous studies of Baiyangdian Lake mainly focused on water quality evolution [12], ecological risk assessment [13], aquatic macrophyte variation [14], antibiotic distribution [15], and pollutant release fluxes [16]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call