Abstract

AbstractAimTo explore large‐scale patterns and the drivers of carbon:nitrogen:phosphorus (C:N:P) stoichiometry in heterotrophic microbes.LocationA 3500‐km grassland transect on the Tibetan Plateau.MethodsWe investigated large‐scale C:N:P stoichiometry patterns in the soil microbial biomass and their relationships with abiotic factors and soil microbial community structures by obtaining soil samples from 173 sites across the Tibetan alpine grasslands.ResultsC:N:P ratios in the soil microbial biomass varied widely among grassland types, with higher microbial C:N, C:P and N:P ratios in the alpine steppe than the alpine meadow. The soil microbial C:N:P ratio (81:6:1) in the alpine steppe was significantly wider than the global average (42:6:1). Combined stepwise regression and generalized additive models revealed that variations in the microbial C:N ratio were primarily related to abiotic variables, with the microbial C:N ratio exhibiting a decreasing trend along the precipitation gradient. In contrast, variations in microbial C:P and N:P ratios were primarily associated with shifts in the community structure of soil microbes. The microbial C:P and N:P ratios were both negatively associated with all components of the soil microbial communities. However, the fungi to bacteria ratio only regulated the microbial C:P ratio.Main conclusionsThese results demonstrate that microbial C:N:P stoichiometry exhibits significant flexibility across various ecosystem types. This flexibility is partly induced by shifts in microbial community structure and variations in environmental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.