Abstract
Approximately 70,150 dry Mg of biosolids from over 450 wastewater treatment facilities are applied to the semi-arid rangelands of Colorado every year. Research on semi-arid grassland responses to biosolids has become vital to better understand ecosystem dynamics and develop effective biosolids management strategies. The objectives of this study were to determine the long-term (∼12 years) effects of a single biosolids application, and the short-term (∼2 years) effects of a repeated application, on plant and microbial community structure in a semi-arid grassland soil. Specific attention was paid to arbuscular mycorrhizal fungi (AMF) and linkages between shifts in plant and soil microbial community structures. Biosolids were surface applied to experimental plots once in 1991 (long-term plots) and again to short-term plots in 2002 at rates of 0, 2.5, 5, 10, 21, or 30 Mg ha −1. Vegetation (species richness and above-ground biomass), soil chemistry (pH, EC, total C, total N, and extractable P, NO 3–N, and NH 4–N), and soil microbial community structure [ester-linked fatty acid methyl esters (EL-FAMEs)], were characterized to assess impacts of biosolids on the ecosystem. Soil chemistry was significantly affected and shifts in both soil microbial and plant community structure were observed with treatment. In both years, the EL-FAME biomarker for AMF decreased with increasing application rate of biosolids; principal components analysis of EL-FAME data yielded shifts in the structure of the microbial communities with treatment primarily related to the relative abundance of the AMF specific biomarker. Significant ( p≤0.05) correlations existed among biomarkers for Gram-negative and Gram-positive bacteria, AMF and specific soil chemical parameters and individual plant species' biomass. The AMF biomarker was positively correlated with biomass of the dominant native grass species blue grama ( Bouteloua gracilis [Willd. ex Kunth] Lagasca ex Griffiths) and was negatively correlated with western wheatgrass ( Agropyron smithii Rydb.) biomass. This study demonstrated that applications of biosolids at relatively low rates can have significant long-term effects on soil chemistry, soil microbial community structure, and plant community species richness and structure in the semi-arid grasslands of northern Colorado. Reduced AMF and parallel shifts in the soil microbial community structure and the plant community structure require further investigation to determine precisely the sequence of influence and resulting ecosystem dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.