Abstract

The self-assembly of patchy nanosized building blocks is an efficient strategy for producing highly organized materials. Herein we report the chaining of divalent silica nanoparticles with polystyrene patches dispersed in tetrahydrofuran triggered by lowering the solvent quality. We study the influence of the patch-to-particle size ratio and show that the nature of the added nonsolvent, for example, ethanol, water, or salty water, and its volume fraction should be carefully adjusted. We demonstrate that colloidal assembly initially obeys the kinetic model of step-growth polymerization and that beyond a certain length, the chains have the possibility to cyclize. We also show that the length of the chains can be controlled by the addition of one-patch silica nanoparticles, which act as colloidal analogues of chain stoppers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.