Abstract
Infrared probes are chemical moieties whose vibrational modes are used to obtain spectroscopic information about structural dynamics of complex systems; in particular, of biomacromolecules. Here, we explore the vibrational spectroscopy and dynamics of a reagent, 3-(4-azidophenyl)propiolonitrile (AzPPN), for selectively tagging thiols in protein environments with a multifunctional infrared probe containing both, an azide and a nitrile chromophore. The linear infrared spectrum of AzPPN is heavily perturbed in the antisymmetric azide stretching region as a result of accidental Fermi resonances. Isotopically labeling the azide group at the β-position deperturbs the spectrum considerably and reveals two combination tones that mix with the antisymmetric stretching fundamental into a Fermi triad of hybrid vibrational excitations. Moreover, two-dimensional infrared (2DIR) spectra were recorded for 15Nβ-labeled AzPPN, which reveal waiting-time-dependent spectral shifts of diagonal peaks and dynamic buildups of cross peaks. The 2DIR-spectral evolution is indicative of intramolecular distribution of the pump-induced excess vibrational energy into low-frequency modes of the molecule that are coupled to either the azide or the nitrile stretching transition dipoles. Finally, IR-pump/IR-probe spectra with selective narrowband excitation reveal a time constant of 2.3 ps for intramolecular vibrational redistribution (IVR) and 18 ps for the final energy dissipation into the solvent. The cross-peak dynamics corroborate a notion in which IVR within the AzPPN-molecule is an irreversible process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have