Abstract

Thin film crystalline silicon solar cells can only achieve high efficiencies if light trapping can be used to give a long optical path length, while simultaneously achieving near unity collection probabilities for all generated carriers. This necessitates a supporting substrate of a foreign material, with refractive index compatible with light trapping schemes for the silicon. The resulting inability to nucleate growth of crystalline silicon films of good crystallographic quality on such foreign substrates, at present, prevents the achievement of high efficiency devices using conventional single junction solar cell structures. The parallel multijunction solar cell provides a new approach for achieving high efficiencies from very poor quality material, with near unity collection probabilities for all generated carriers achieved through appropriate junction spacing. Heavy doping is used to minimise the dark saturation current contribution from the layers, therefore allowing respectable voltages. The design strategy, corresponding advantages, theoretical predictions and experimental results are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.