Abstract

The maximum photocurrent, power dissipation, and linearity of waveguide photodiodes are limited by the length over which the input optical power is absorbed. This absorption length is determined by the absorption coefficient of the absorbing layer material (αo), the optical confinement factor (Γ), and the excess loss coefficient (αi). In this paper, we analyze the fundamental limits to maximizing the absorption length and demonstrate a new waveguide photodiode structure that approaches these limits. The new structure is referred to as a slab-coupled optical waveguide photodiode (SCOWPD) and is realized in the InGaAsP/InP material system. Assuming 100% coupling efficiency, the SCOWPD has an ultralow optical confinement factor and a low excess loss coefficient, both calculated from measurements, of Γ = 0.069% and αi = 1.65 cm-1, respectively. This results in a 1/e absorption length of 2.1 mm. The SCOWPD exhibits an external responsivity of 0.8 A/W and a maximum photocurrent of 250 mA at a wavelength of 1.55 μm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.