Abstract

The influence of doping profiles, traps and grain boundaries in the semiconductor on the C- V characteristics of ideal MIS diodes is calculated. In addition, it is shown that losses and frequency dispersion as well as hysteresis effects can result from traps in the semiconductor. If these semiconductor properties are ignored misinterpretations in terms of interface state density will arise which can be about 10 12 cm −2. In the case of decreasing doping profiles and traps in a n-type semiconductor one will get an apparent positive surface charge while an apparent negative surface charge will result from increasing profiles and grain boundaries. A method for the experimental determination of the C- V characteristics of ideal MIS diodes is developed. This method is applicable to stable diodes with only shallow traps in the semiconductor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.