Abstract
In this paper, we study the bifurcation of limit cycles in piecewise smooth systems by perturbing a piecewise Hamiltonian system with a generalized homoclinic or generalized double homoclinic loop. We first obtain the form of the expansion of the first Melnikov function. Then by using the first coefficients in the expansion, we give some new results on the number of limit cycles bifurcated from a periodic annulus near the generalized (double) homoclinic loop. As applications, we study the number of limit cycles of a piecewise near-Hamiltonian systems with a generalized homoclinic loop and a central symmetric piecewise smooth system with a generalized double homoclinic loop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.