Abstract
We investigate the likelihood ratio test for a large block-diagonal covariance matrix with an increasing number of blocks under the null hypothesis. While so far the likelihood ratio statistic has only been studied for normal populations, we establish that its asymptotic behavior is invariant under a much larger class of distributions. This implies robustness against model misspecification, which is common in high-dimensional regimes. Demonstrating the flexibility of our approach, we additionally establish asymptotic normality of the log-likelihood ratio test for the equality of many large sample covariance matrices under model uncertainty. A simulation study and an analysis of a data set from psychology emphasize the usefulness of our findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.