Abstract

This paper studies the estimation of large dynamic covariance matrices with multiple condition- ing variables. We introduce an easy-to-implement semiparametric method to estimate each entry of the covariance matrix via model averaging marginal regression, and then apply a shrinkage technique to obtain the dynamic covariance matrix estimation. Under some regularity conditions, we derive the asymptotic properties for the proposed estimators including the uniform consistency with general convergence rates. We further consider extending our methodology to deal with the scenarios: (i) the number of conditioning variables is divergent as the sample size increases, and (ii) the large covariance matrix is conditionally sparse relative to contemporaneous market factors. We provide a simulation study that illustrates the finite-sample performance of the developed methodology. We also provide an application to financial portfolio choice from daily stock returns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.