Abstract

Plywood is made of wood veneers that are bonded with adhesives such as urea-formaldehyde, phenol-formaldehyde and melamine-formaldehyde resins. The plywood made from formaldehyde-based adhesives not only releases formaldehyde but also relies on fossil resources. In this article, we synthesized furan-acetone adducts from lignocellulosic biomass in one pot. The furan-acetone adducts could be directly used as adhesives with the addition of phosphoric acid as a curing catalyst. Particularly, with the addition of 5 wt% diphenylmethane diisocyanate (MDI) as a crosslinking agent, both the wet and dry bonding strength of the plywood prepared from the adhesives could meet the minimum requirement of 0.7 MPa (Chinese National Standard GB/T 9846-2015). The possible adhesion mechanism is that the penetration of furan-acetone adhesives into vessels and cell lumens followed by crosslinking during hot-pressing forms mechanical interlocking at the interface of wood veneers, which provides the main bonding strength of plywood. The findings presented here could provide a new way for the efficient preparation of aldehyde-free green wood adhesives and the value-added utilization of woody biomass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call