Abstract
We report the results of optical pump-nuclear resonance probe experiments on the SCO complex [FeII(L-PtII(t-but-tpy))2](BF4)2 with L being 2,6-di(pyrazol-1-yl)-4-(trimethylsilylethynyl)pyridine) and t-but-tpy being 4,4′,4″-Tri-tert-Butyl-2,2′:6′,2″-terpyridine using a novel experimental set-up at the beamline P01, Petra III, DESY Hamburg. We investigate the changes in the spin state of the complex when it is excited by laser pulses of 766 nm wavelength and pulse width < 100 ps. Our simulations of the nuclear forward scattering data indicate a dominant low spin state along with some high spin fraction in the absence of laser pulses. We observe clear changes in the time-spectrum following the instant at which the laser pulse hits the sample. Furthermore, these alterations are recorded as the relative timing of the laser pulses with respect to the synchrotron pulses is varied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.