Abstract

A novel sample environment enabling optical pump – nuclear resonance probe experiments has been installed at the beamline P01, Petra III, DESY Hamburg. This set-up has been used to investigate optically induced spin state changes of spin crossover (SCO) complexes by nuclear resonant scattering immediately after excitation by an optical laser pulse. Here, we report the technical details as well as first results of the experiments performed at 290 K and 80 K on the SCO complexes [Fe (NH2trz)3]Cl2 and [Fe(PM-BiA)2(NCS)2], respectively. The 57Fe-enriched SCO complexes were excited by a 531 nm laser with a pulse length < 100 ps. Evaluation of the nuclear forward scattering data clearly indicate the presence of high spin (HS) states when the complexes are excited by laser pulses and a pure low spin (LS) state in the absence of any laser pulse. Furthermore, the dependence of the optically excited HS-fraction has been determined as a function of the average optical power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.