Abstract

The ecological floating beds (EFB) are widely used in water quality restoration because of its low cost, high efficiency, and green characteristics. However, there is a potential impact of the EFB on the environment while water purification is not in progress. In this study, the life cycle assessment (LCA) and life cycle cost (LCC) methods were used to evaluate the overall environment of mixed-fill and biofilm enhanced EFB. The results show that the total environmental impact of the mixed-fill ecological floating beds (MEFB) is greater than that of the biofilm ecological floating beds (BEFB). In the raw material acquisition and operational stages, the environmental impact of the MEFB is smaller than that of the BEFB, while the environmental impact of the MEFB during the construction phase is much greater than that of the BEFB. The environmental impact of the construction stage of the MEFB accounts for 98.3% of the environmental impact of the entire life cycle. The operational stage of the MEFB was eco-friendly with regard to eutrophication potential, photochemical oxidation potential, ozone layer depletion potential, human toxicity potential, freshwater aquatic eco-toxicity potential, and terrestrial eco-toxicity potential environmental impact, and these effects of the operational stage of the MEFB account for 45.5% of the total environmental impact. The impact of the BEFB on the environment during raw material acquisition, construction, and operation accounts for 46.7%, 37.7%, and 15.6%, respectively, of the entire life cycle impact. Both two EFB technologies, the capital cost was the main expenditure with LCC, accounting for 60.4% and 52.9% of the MEFB and BEFB, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call