Abstract

AbstractShort‐term precipitation forecasts are critical to regional water management, particularly in the Western U.S. where atmospheric rivers can be predicted reliably days in advance. However, spatial error in these forecasts may reduce their utility when the costs of false positives and negatives differ greatly. Here we investigate whether deep learning methods can leverage spatial patterns in precipitation forecasts to (a) improve the skill of predicting the occurrence of precipitation events at lead times from 1 to 14 days, and (b) balance the tradeoff between the rate of false negatives and false positives by modifying the discrimination threshold of the classifiers. This approach is demonstrated for the Sacramento River Basin, California, using the Global Ensemble Forecast System (GEFS) v2 precipitation fields as input to convolutional neural network (CNN) and multi‐layer perceptron models. Results show that the deep learning models do not significantly improve the overall skill (F1 score) relative to the ensemble mean GEFS forecast with bias‐corrected threshold. However, additional analysis of the CNN models suggests they often correct missed predictions from GEFS by compensating for spatial error at longer lead times. Additionally, the deep learning models provide the ability to adjust the rate of false positives and negatives based on the ratio of costs. Finally, analysis of the network activations (saliency) indicates spatial patterns consistent with physical understanding of atmospheric river events in this region, lending additional confidence in the ability of the method to support water management applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call