Abstract

AbstractThe complexity and heterogeneity of pore structure present significant challenges in accurate permeability estimation. Commonly used empirical formulas neglect its microscopic and topological characteristics, thus lacking accuracy and adaptability. While machine learning (ML) and deep learning (DL) models demonstrate promising performance, but encounter challenges of data availability, computational cost, and model interpretability. The present study aims to develop a more robust and accurate permeability prediction model via knowledge extraction from ML model. We first establish an ML model between permeability and the geometry‐topology characteristics of porous media using Extreme Gradient Boosting (XGBoost) algorithm. The data set used to fit ML model is prepared from 458 samples of different types of porous media. Using the SHapley Additive exPlanations (SHAP) value, the influence of each feature on permeability prediction is quantified. It is found that the closeness centrality (topology feature), tortuosity, porosity (macroscopic features) and throat diameter, throat length, pore diameter (pore network features) are vital for permeability prediction. Guided by partial dependence calculation, the unknown function relationship between permeability and the top six important features is established. The novel permeability prediction model incorporating topology feature improves the prediction accuracy and demonstrates strong applicability across diverse data sets. This new model presents an optimal balance between simplicity and performance, rendering it a compelling alternative for permeability prediction in porous media. The research provides a novel referable framework of knowledge extraction via ML to reveal the important features and establish the potential relationship that can be extended and applied in other research fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call