Abstract

AbstractThis study compares the performance of Global Ensemble Forecast System (GEFS) and European Centre for Medium-Range Weather Forecasts (ECMWF) precipitation ensemble forecasts in Brazil and evaluates different analog-based methods and a logistic regression method for postprocessing the GEFS forecasts. The numerical weather prediction (NWP) forecasts were evaluated against the Physical Science Division South America Daily Gridded Precipitation dataset using both deterministic and probabilistic forecasting evaluation metrics. The results show that the ensemble precipitation forecasts performed commonly well in the east and poorly in the northwest of Brazil, independent of the models and the postprocessing methods. While the raw ECMWF forecasts performed better than the raw GEFS forecasts, analog-based GEFS forecasts were more skillful and reliable than both raw ECMWF and GEFS forecasts. The choice of a specific postprocessing strategy had less impact on the performance than the postprocessing itself. Nonetheless, forecasts produced with different analog-based postprocessing strategies were significantly different and were more skillful and as reliable and sharp as forecasts produced with the logistic regression method. The approach considering the logarithm of current and past reforecasts as the measure of closeness between analogs was identified as the best strategy. The results also indicate that the postprocessing using analog methods with long-term reforecast archive improved raw GEFS precipitation forecasting skill more than using logistic regression with short-term reforecast archive. In particular, the postprocessing dramatically improves the GEFS precipitation forecasts when the forecasting skill is low or below zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.