Abstract
The rapid expansion of the electric vehicle (EV) market in recent years has presented manufacturers with the challenge of strategically prioritizing the types of EVs in which to invest under uncertain conditions. This study proposes an enhanced multi-attribute decision-making (MADM) framework to address this issue by leveraging online reviews and expert opinions. The proposed framework combines a novel linguistic representation, called calibrated basic uncertain linguistic information (CBULI), to capture uncertainty, a value function from cumulative prospect theory (CPT) with double reference points to model the manufacturers’ psychological preferences, and the Preference Ranking Organization Method for Enrichment of Evaluations II (PROMETHEE II) for prioritizing EVs for investment. It extracts demand attributes from online reviews, applies CBULI to represent uncertain evaluations, and incorporates CPT to capture risk preferences. A case study of an EV manufacturing enterprise in Sichuan, China, was conducted to validate our framework, and the results demonstrated its effectiveness and practicability in identifying the most promising types of EVs for investment. The results of sensitivity and comparative analyses further confirmed the robustness and superiority of the model in comparison with prevalent methods. The work here contributes to methodological advancements in research on the choice of types of EVs in which to invest, and provides valuable insights for EV enterprises to make informed investment-related decisions that are aligned with user demands and enterprise development. The proposed MADM framework supports the strategic development of the EV industry by enabling manufacturers to prioritize investment in the appropriate types of EVs under uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.