Abstract

The urgency of sustainable, energy-efficient transportation has become extremely important as the US 1 and Global 2 energy sectors review their 2035-2040 phase-out of fossil fuel use. Top Global vehicle manufacturers have released a timeline to limit production for diesel and petrol-based three vehicles as early as 2024 4. The 2022 United States fuel costs increase reignited consumer interest in electric and hybrid transportation 5. Still, consumers are met with a limited understanding of the environmental impact expected with the fuel transition to electric transportation changes. CURRENTLY, the US has 275 million registered gas vehicles; 1.5 million electric vehicles 6. This means nearly 300 million electric automobiles will soon be introduced into the US Energy infrastructure within the next decade. Currently, the EPA approves two charging systems for residential EV charging options 7, SAE Electric Vehicle Conductive Charge Coupler (SAE J1772) Level 1, charging up to 120VAC, and Level 2, charging up to 240VAC. Level 3 direct-current (DC) Fast Charging, primarily provided by commercial providers, requires 480VAC and is not recommended for residential use due to its high energy costs 8. EPA regions in the United States experience increased electrical grid disturbances such as climate emergencies, seasonal infrastructure grid spikes, and commercial usage. The inevitable increase in EV charging raises concerns about current US federal and state policies based on the specific environmental impact of each US EPA region to support the eGrid subregion 9 preparations for expanding energy needs of an increased electric vehicle supply. Introduction By 2030, the electric vehicle will become a part of our daily necessities and social needs. The implementation of EVs can introduce similar culture-shifting changes seen with the expanded smartphone use in the 2000s or create many concerns that arose with social media in the late 2010s. Should EVs dramatically affect transportation patterns, environmental impact, energy needs, and economic changes? Can society understand the responsibility for equipment that can have profound implications if not understood? While we can assume these changes can create a greener outlook for vehicle emissions until we see the effects of gas-to-electric transitions, EVs' actual impact on our social patterns can verge on speculation. This review identifies the manufacturing impact, maintenance, and charging needs; as the economic and social equity factors for those who may lack the resources to maintain an electric vehicle responsibly. Furthermore, lastly, does the expansion of EV innovation inspire other technological and social improvements for inventors? Will this lead to re-engineering other appliances and equipment with the potential of a greener result? With the implementation of EVs, regulation must consider all aspects of accessibility to review if it improves or hinders social improvement. The maintenance of these vehicles, the accessibility of charging, the environmental regulatory needs for manufacturing, and safety are all things every potential consumer has to consider. When the expiration of gas-powered vehicles begins in 2030, regulators need to be prepared to transition prior vehicle concerns with expanded EV usage more seriously to ensure consumer safety and understand what risks come with greener expectations. Methods Regulations for electric vehicle (EV) manufacturers vary by country and region but generally aim to promote EV adoption and reduce transportation's environmental impact. Current regulations are the following: Emission standards: Local State and Federal regulations are to determine emission standards for EVs based on NEPA <> to reduce air pollution and greenhouse gas emissions per US region. Zero-emission vehicle (ZEV) mandates: Some countries and states have ZEV mandates, which require a certain percentage of new vehicle sales to be zero-emission vehicles. Financial incentives: US Department of Energy tax credits or rebates <> encourage consumers to purchase EVs. Charging infrastructure: Governments may provide funding or require the installation of charging infrastructure to support the growth of the EV market. Battery recycling: Governments may set regulations for battery recycling to ensure the proper disposal of used batteries and reduce the environmental impact of battery production. In the European Union, the European Commission has set a target of at least 30 million EVs on the road by 2025 and 60-70% of new cars to be emissions-free by 2030. In the United States, the Biden Administration has announced plans to promote the deployment of 500,000 charging stations by 2030. In China, the government has set a target of 20% of new vehicle sales to be EVs by 2025. During 2021, approximately 60,000 public electric vehicle (EV) charging stations function within the United States. The number of charging stations has been proliferating in recent years due to increased demand for EVs and efforts by governments and private companies to build out charging infrastructure. The 2021-2024 United States Presidential Administration stated plans to provide consumer access to 500,000 charging stations by 2030 eventually. This is compared to 120,000 to 130,000 working gas stations within the United States<>. The maintenance requirements for an electric vehicle (EV) are typically different from those of a traditional internal combustion engine vehicle. As such, some specialized equipment may be needed to maintain an EV properly. Here are some examples of equipment that may be required for EV maintenance: High-Voltage Disconnect Tool: To safely disconnect the high-voltage battery in an EV, a unique tool is required to safely cut power to the battery while preventing any electrical arcing. Charging Equipment: Depending on the type of EV and charging system, specialized equipment may be needed to charge the battery, including charging cables, charging stations, and DC fast-charging equipment. Diagnostic Tools: To diagnose issues with the electrical and charging systems in an EV, specialized diagnostic tools are needed that can communicate with the vehicle's onboard computers. Brake System Tools: Electric vehicles typically use regenerative braking, which can wear the brake system more than traditional internal combustion engine vehicles. As such, specialized tools may be needed to service the brake system on an EV. Tire Changing Equipment: Electric vehicles can be heavy due to the battery's weight; specialized tire changing equipment may be needed to properly adjust the tires on an EV. Discussion The average cost of an electric vehicle (EV) can vary widely depending on the model and its features. In 2021, the average price of a new EV in the United States was around $55,000. Not including EV operating costs, costs for hybrid-fuel considerations, diagnostics, and general maintenance can offset the higher upfront cost compared to internal combustion engine vehicles over time. The Department of Energy has provided financial incentives, such as tax credits or rebates, to encourage EV purchases. The cost of recharging an electric vehicle (EV) can vary widely depending on several factors, including the local cost of electricity, the size of the battery, and the charging rate. As a rough estimate, it can cost anywhere from $5 to $15 to charge an EV, depending on the specific circumstances. This can range from $5 to $8 for a small, hatchback-style EV with a 30 kWh battery to $15 or more for a large SUV with a 100 kWh battery. It is important to note that the cost of charging an EV is still typically lower than the cost of fueling an internal combustion engine vehicle with gasoline. Additionally, many electric utilities offer time-of-use rates that allow EV owners to charge their cars during off-peak hours when electricity is less expensive. This helps minimize the cost of recharging an EV. The impact of electric vehicles (EVs) on electric bills will depend on several factors, including the electric utility's rate structure, the EV owner's driving habits, and the source of the electricity used for charging. The additional costs of an EV will increase a household's electric consumption and, therefore, its electric bill. However, the impact on the electric bill will be influenced by the cost of electricity in the local area, the size of the EV battery, and how often the EV is charged. It is estimated that charging an EV can add $30 to $50 per month to a household's electric bill. However, the actual cost can be higher or lower depending on the specific circumstances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call