Abstract
Agriculture is vital for providing food and economic benefits, but crop diseases pose significant challenges, including coffee cultivation. Traditional methods for disease identification are labor-intensive and lack real-time capabilities. This study aims to address existing methods’ limitations and provide a more efficient, reliable, and cost-effective solution for coffee leaf disease identification. It presents a novel approach to the real-time identification of coffee leaf diseases using deep learning. We implemented several transfer learning (TL) models, including ResNet101, Xception, CoffNet, and VGG16, to evaluate the feasibility and reliability of our solution. The experiment results show that the proposed models achieved high accuracy rates of 97.30%, 97.60%, 97.88%, and 99.89%, respectively. CoffNet, our proposed model, showed a notable processing speed of 125.93 frames per second (fps), making it suitable for real-time applications. Using a diverse dataset of mixed images from multiple devices, our approach reduces the workload of farmers and simplifies the disease detection process. The findings lay the groundwork for the development of practical and efficient systems that can assist coffee growers in disease management, promoting sustainable farming practices, and food security.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have