Abstract

Rice is one of the most widely consumed foods all over the world. Various diseases and deficiency disorders impact the rice crop's growth, thereby hampering the rice yield. Therefore, proper crop monitoring is very important for the early diagnosis of diseases or deficiency disorders. Diagnosis of diseases and disorders requires specialized manpower, which is not scalable and accessible to all farmers. To address this issue, machine learning and deep learning (DL)-driven automated systems are designed, which may help the farmers in diagnosing disease/deficiency disorders in crops so that proper care can be taken on time. Various studies have used transfer learning (TL) models in the recent past. In recent studies, further improvement in rice disease and deficiency disorder diagnosis system performance is achieved by performing the ensemble of various TL models. However, in all these DL-based studies, the segmentation of the region of interest is not done beforehand and the infected-region extraction is left for the DL model to handle automatically. Therefore, this article proposes a novel framework for the diagnosis of rice-infected leaves based on DL-based segmentation with bitwise logical AND operation and DL-based classification. The rice diseases covered in this study are bacterial leaf blight, brown spot, and leaf smut. The rice nutrient deficiencies like nitrogen (N), phosphorous (P), and potassium (K) were also included. The results of the experiment conducted on these datasets showed that the performance of DeepBatch was significantly improved as compared to the conventional technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.