Abstract
We propose a Levenberg---Marquardt method with general uniformly convex regularization terms to solve nonlinear inverse problems in Banach spaces, which is an extension of the scheme proposed by Hanke in (Inverse Probl 13:79---95, 1997) in Hilbert space setting. The method is so designed that it can be used to detect the features of the sought solutions such as sparsity or piecewise constancy. It can also be used to deal with the situation that the data is contaminated by noise containing outliers. By using tools from convex analysis in Banach spaces, we establish the convergence of the method. Numerical simulations are reported to test the performance of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.