Abstract

In this paper, we consider a generalized inexact Newton-Landweber iteration to solve nonlinear ill-posed inverse problems in Banach spaces, where the forward operator might not be Gâteaux differentiable. The method is designed with non-smooth convex penalty terms, including L1-like and total variation-like penalty functionals, to capture special features of solutions such as sparsity and piecewise constancy. Furthermore, the inaccurate inner solver is incorporated into the minimization problem in each iteration step. Under some assumptions, based on ε-subdifferential, we establish the convergence analysis of the proposed method. Finally, some numerical simulations are provided to illustrate the effectiveness of the method for solving both smooth and non-smooth nonlinear inverse problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.