Abstract
This paper aims at proposing a learning theory approach to the topic of esti- mating transfer functions in system identification. A frequency domain identification problem is formulated as an atomic norm regularization scheme in a random design framework of learning theory. Such a formulation makes it possible to obtain sparsity and provide finite sample estimates for learning the transfer function in a learning the- ory framework. Error analysis is done for the learning algorithm by applying a local polynomial reproduction formula, concentration inequalities and iteration techniques. The convergence rate obtained here is the best in the literature. It is hoped that the learning theory approach to the frequency domain identification problem would bring new ideas and lead to more interactions among the areas of system identification, learning theory and frequency analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.