Abstract
Atomic norms occur frequently in data science and engineering problems such as matrix completion, sparse linear regression, system identification and many more. These norms are often used to convexify non-convex optimization problems, which are convex apart from the solution lying in a non-convex set of so-called atoms. For the convex part being a linear constraint, the ability of several atomic norms to solve the original non-convex problem has been analyzed by means of tangent cones. This paper presents an alternative route for this analysis by showing that atomic norm convexifcations always provide an optimal convex relaxation for some related non-convex problems. As a result, we obtain the following benefits: (i) treatment of arbitrary convex constraints, (ii) potentially obtaining solutions to the non-convex problem with a posteriori success certificates, (iii) utilization of additional prior knowledge through the design or learning of the non-convex problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.