Abstract
In most adaptive control algorithms, parameter estimate errors are not guaranteed to converge to zero. This lack of convergence adversely affects the global performance of the algorithms. The effect is more pronounced in control problems where the desired reference setpoint or trajectory depends on the system's unknown parameters. This paper presents a parameter estimation routine that allows exact reconstruction of the unknown parameters in finite-time provided a given excitation condition is satisfied. The robustness of the routine to an unknown bounded disturbance or modelling error is also shown. To enhance the applicability of the finite-time (FT) identification procedure in practical situations, a novel adaptive compensator that (almost) recover the performance of the FT identifier is developed. The compensator guarantees exponential convergence of the parameter estimation error at a rate dictated by the closed-loop system's excitation. It was shown how the adaptive compensator can be used to improve upon existing adaptive controllers. The modification provided guarantees exponential stability of the parametric equilibrium provided the given PE condition is satisfied. Otherwise, the original system's closed-loop properties are preserved. The results are independent of the control structure employed. The true parameter value is obtained without requiring the measurement or computation of the velocity state vector. Moreover, the technique provides a direct solution to the problem of removing auxiliary perturbation signals when parameter convergence is achieved. The effectiveness of the proposed methods is illustrated with simulation examples. There are two major approaches to online parameter identification of nonlinear systems. The first is the identification of parameters as a part of state observer while the second deals with parameter identification as a part of controller. In the first approach, the observer is designed to provide state derivatives information and the parameters are estimated via estimation methods such as least squares method [19] and dynamic inversion [6]. The second trend of parameter identification is much more widespread, as it allows identification of systems with unstable dynamics. Algorithms in this area include parameter identification methods based on variable structure theory [22, 23] and those based on the notion of passivity [13]. In the conventional adaptive control algorithms, the focus is on the tracking of a given reference trajectory and in most cases parameter estimation errors are not guaranteed to
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.