Abstract
Portable systems, such as wireless communication systems, laptops, smart phones, consumer electronics, and implanted medical devices, are in high demand in the rapidly expanding consumer market. When it comes to extending the running duration of these portable devices, low-power and low-voltage integrated circuits are used almost universally to achieve this. The design of an analogue integrated circuit with somewhat excellent processing characteristics, when compared to its digital equivalent, is a difficult undertaking, especially when it comes to applications requiring low voltage and low power. The use of a digitally driven CMOS technology for the design of an analogue circuit equivalent has increased the difficulty of the difficulties in today's environment. Because of this, the design of ultra-low power analogue circuits has become the bottleneck in the contemporary Complementary Metal Oxide Semiconductor (CMOS) technology. This thesis analyses some of the frequently utilised low power design strategies, which are specifically suited for analogue circuits and are being widely adopted. In today's electronic age, it is necessary to build competitive analogue integrated circuits in order to stay up with the high performance digital integrated circuits that are now available. Since its invention, the amplifier has played a critical role in the design of the vast majority of analogue integrated circuits. Despite this, the performance of the amplifier is what distinguishes the majority of analogue circuits such as converters, filters, and tracking circuits.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have