Abstract
This work develops a biologically inspired neural network for contour detection in natural images by combining the nonclassical receptive field modulation mechanism with a deep learning framework. The input image is first convolved with the local feature detectors to produce the classical receptive field responses, and then a corresponding modulatory kernel is constructed for each feature map to model the nonclassical receptive field modulation behaviors. The modulatory effects can activate a larger cortical area and thus allow cortical neurons to integrate a broader range of visual information to recognize complex cases. Additionally, to characterize spatial structures at various scales, a multiresolution technique is used to represent visual field information from fine to coarse. Different scale responses are combined to estimate the contour probability. Our method achieves state-of-the-art results among all biologically inspired contour detection models. This study provides a method for improving visual modeling of contour detection and inspires new ideas for integrating more brain cognitive mechanisms into deep neural networks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have