Abstract
In Cassini ISS (Imaging Science Subsystem) images, contour detection is often performed on disk-resolved objects to accurately locate their center. Thus, contour detection is a key problem. Traditional edge detection methods, such as Canny and Roberts, often extract the contour with too much interior details and noise. Although the deep convolutional neural network has been applied successfully in many image tasks, such as classification and object detection, it needs more time and computer resources. In this paper, a contour detection algorithm based on H-ELM (Hierarchical Extreme Learning Machine) and DenseCRF (Dense Conditional Random Field) is proposed for Cassini ISS images. The experimental results show that this algorithm’s performance is better than both traditional machine learning methods, such as Support Vector Machine, Extreme Learning Machine and even deep Convolutional Neural Network. The extracted contour is closer to the actual contour. Moreover, it can be trained and tested quickly on the general configuration of PC, and thus can be applied to contour detection for Cassini ISS images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.