Abstract

This paper addresses localization of needles inserted both in-plane and out-of-plane in challenging ultrasound-guided interventions where the shaft and tip have low intensity. Our approach combines a novel digital subtraction scheme for enhancement of low-level intensity changes caused by tip movement in the ultrasound image and a state-of-the-art deep learning scheme for tip detection. As the needle tip moves through tissue, it causes subtle spatiotemporal variations in intensity. Relying on these intensity changes, we formulate a foreground detection scheme for enhancing the tip from consecutive ultrasound frames. The tip is augmented by solving a spatial total variation regularization problem using the split Bregman method. Lastly, we filter irrelevant motion events with a deep learning-based end-to-end data-driven method that models the appearance of the needle tip in ultrasound images, resulting in needle tip detection. The detection model is trained and evaluated on an extensive ex vivo dataset collected with 17G and 22G needles inserted in-plane and out-of-plane in bovine, porcine and chicken phantoms. We use 5000 images extracted from 20 video sequences for training and 1000 images from 10 sequences for validation. The overall framework is evaluated on 700 images from 20 sequences not used in training and validation, and achieves a tip localization error of 0.72 ± 0.04mm and an overall processing time of 0.094s per frame (~ 10 frames per second). The proposed method is faster and more accurate than state of the art and is resilient to spatiotemporal redundancies. The promising results demonstrate its potential for accurate needle localization in challenging ultrasound-guided interventions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call