Abstract

The segregation of solute atoms at grain boundaries (GBs) can strongly impact the structural and functional properties of polycrystals. Yet, due to the limited availability of simulation tools to study polycrystals at the atomistic scale (i.e., interatomic potentials), there is a minimal understanding of the variation of solute segregation tendencies across the very complex space of GB microenvironments and the large range of alloys in which it can occur. Here, we develop an algorithmic framework that can directly learn the full spectrum of segregation energies for a metal solute atom in a metal polycrystal from abinitio methods, bypassing the need for alloy interatomic potentials. This framework offers a pathway to a comprehensive catalog of GB solute segregation with quantum accuracy, for the entire alloy space. As an initial demonstration in this pursuit, we build an extensive GB segregation database for aluminum-based alloys across the periodic table, including dozens of alloys for which there are substantially no prior data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.