Abstract

Data-driven modeling of dynamical systems has drawn much research attention recently, with the goal of approximating the underlying governing rules of a dynamical system with data-driven differential equations. Many real-world dynamical systems can be modeled as coupled oscillators, such as chemical reactors, ecological systems, integrated circuits, and mechanical systems. In those systems, the response can be described by coupled differential equations in which multi-dimensional state variables describe the timeevolution. However, in practice, the full set of state variables is often difficult or expensive to measure. This paper shows an attempt to develop a data-driven model for damped coupled oscillators from a mixed-mode response signal using neural differential equations. The univariate time-series data of the impulse response is first resampled into a multi-variate time-delayed embedding. A singular value decomposition is then applied to find the dominant orthogonal basis (oscillator modes). The decoupled modes are then modeled with parameterized neural differential equations. The unknown parameters can be learned from a segment of historical data. The proposed methodology is validated using impact testing data of an end mill in a machine tool spindle. The results demonstrate that the proposed method can effectively model damped coupled oscillators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.