Abstract

Due to the ever-increasing penetration of renewable resources, Frequency control of microgrids has recently been received special consideration from researchers. The continual supply of load consumption is the major issue of standalone microgrids due to the high penetration of renewable resources. Furthermore, microgrids suffer from low inertia against load changes due to their small size and unpredictable load interruption. In addition to the above-mentioned issues, the uncertain and intermittent behaviors of renewable resources cause problems to keep the balance between load and generation sides. Hence, it is very important to consider novel control methods for keeping balance and consequently control of frequency deviation. In this research, a novel learning-based fractional-order controller is proposed to control the frequency of microgrids including micro-turbines, photovoltaic panels, and wind turbines in order to increase system stability and reduce frequency fluctuation time. The efficiency of this controller has been compared with conventional methods in the simulation and result section.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call