Abstract

The reliable identification of fault types in transmission lines is essential for restoring power supply swiftly and minimizing economic losses during outages, thereby ensuring the safe and efficient functioning of the power system. This paper addresses the challenge of low recognition accuracy in existing transmission line fault diagnosis methods and presents a novel approach based on fault recording data collected from both ends of the line. This method distinguishes between lightning-strike and non-lightning-strike faults, utilizing a deep learning network architecture to analyze time-domain information from recorded data, using the initial and terminal waveforms as inputs. The proposed fault identification model integrates fault current phase mode transformation, Local Mean Decomposition (LMD) decomposition, and spectral entropy analysis, applying deep learning principles to enhance fault detection precision. This comprehensive approach enables the effective identification of various fault types on transmission lines. Extensive simulation tests were conducted using a sophisticated fault simulation model developed within simulation software to validate the proposed algorithm’s efficacy. The results demonstrate the algorithm’s high accuracy and efficiency in recognizing various fault types on transmission lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.