Abstract
The widespread use of electric vehicles (EV) has put a strain on the stable operation of power grid. Therefore, the potential of EV cluster power load regulation has been paid attention. In the cluster, the electric vehicle aggregator (EVA) can gather a large number of EVs and participate in the electricity spot market by optimizing the charging/discharging power. In this study, a bi-objective optimization model for V2G enabled EV cluster operation is proposed to determine the optimal load of EV cluster considering the electricity spot market. First, the scheduling capability of EVs is modelled and aggregated considering the EV user willingness. Then, the demand response and electricity spot trade for EVA are analyzed. Based on the capability constraints and the market rules, an optimization model is established with two objectives of maximizing EVA profits and EV user satisfaction. Finally, a case study in Beijing, China is implemented to prove the feasibility of the proposed model. The results show that the EV user willingness for orderly charging/discharging is distributed in the range of 0.26 and 0.94 with an average value of 0.85. In addition, the proposed EV cluster operation strategy can improve the EVA daily profits by 81.27% and increase the EV user satisfaction by 70% compared with normal charging strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Distributed Generation & Alternative Energy Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.