Abstract

PurposeThe navigation of endovascular guidewires is a dexterous task where physicians and patients can benefit from automation. Machine learning-based controllers are promising to help master this task. However, human-generated training data are scarce and resource-intensive to generate. We investigate if a neural network-based controller trained without human-generated data can learn human-like behaviors.MethodsWe trained and evaluated a neural network-based controller via deep reinforcement learning in a finite element simulation to navigate the venous system of a porcine liver without human-generated data. The behavior is compared to manual expert navigation, and real-world transferability is evaluated.ResultsThe controller achieves a success rate of 100% in simulation. The controller applies a wiggling behavior, where the guidewire tip is continuously rotated alternately clockwise and counterclockwise like the human expert applies. In the ex vivo porcine liver, the success rate drops to 30%, because either the wrong branch is probed, or the guidewire becomes entangled.ConclusionIn this work, we prove that a learning-based controller is capable of learning human-like guidewire navigation behavior without human-generated data, therefore, mitigating the requirement to produce resource-intensive human-generated training data. Limitations are the restriction to one vessel geometry, the neglected safeness of navigation, and the reduced transferability to the real world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call