Abstract

Energy storage using batteries is accepted as one of the most important and efficient ways of stabilising electricity networks and there are a variety of different battery chemistries that may be used. Lead batteries are very well established both for automotive and industrial applications and have been successfully applied for utility energy storage but there are a range of competing technologies including Li-ion, sodium-sulfur and flow batteries that are used for energy storage. The technology for lead batteries and how they can be better adapted for energy storage applications is described. Lead batteries are capable of long cycle and calendar lives and have been developed in recent years to have much longer cycle lives compared to 20 years ago in conditions where the battery is not routinely returned to a fully charged condition. Li-ion batteries have advantages in terms of energy density and specific energy but this is less important for static installations. The other technical features of Li-ion and other types of battery are discussed in relation to lead batteries. A selection of larger lead battery energy storage installations are analysed and lessons learned identified. Lead is the most efficiently recycled commodity metal and lead batteries are the only battery energy storage system that is almost completely recycled, with over 99% of lead batteries being collected and recycled in Europe and USA. The sustainability of lead batteries is compared with other chemistries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call