Abstract

Understanding the relationship between interlayer interactions and the mechanical properties and behaviors of two-dimensional layered materials is critical in the development of related nanodevices. Nevertheless, it is still challenging due to difficulties in experiments. In this work, nanoindentation simulations on few-layer WS2 were conducted by varying the tip radius, suspended membrane radius, and membrane size using a molecular dynamics simulation. Consistent with our previous experimental results, few-layer WS2 exhibited a layer-dependent reduction in fracture strength owing to the uneven stress distribution among individual layers induced by interlayer sliding under out-of-plane deformation. Furthermore, apparent curve hysteresis was observed due to interlayer sliding in the supported region when a large tip radius and membrane radius were employed. However, instead of the supported part, the interlayer sliding within the suspended part resulted in reduced fracture strength with the increase of layer number. These findings not only provide an in-depth comprehension of the influence of interlayer sliding on fracture strength of few-layer WS2, but also suggest that the role of interlayer interactions should be seriously considered during nanodevice design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.