Abstract

The potential applications of 2D layered materials (2DLMs) as the functional membranes in flexible electronics and nano-electromechanical systems emphasize the role of the mechanical properties of these materials. Interlayer interactions play critical roles in affecting the mechanical properties of 2DLMs, and nevertheless the understanding of their relationship remains incomplete. In the present work, it is reported that the fracture strength of few-layer (FL) WS2 can be weakened by the interlayer friction among individual layers with the assistance of finite element simulations and density functional theory (DFT) calculations. The reduced fracture strength can be also observed in FL WSe2 but with a lesser extent, which is attributed to the difference in the interlayer sliding energies of WS2 and WSe2 as confirmed by DFT calculations. Moreover, the tip-membrane friction can give rise to the underestimation of the Young's modulus except for the membrane nonlinearity. These results give deep insights into the influence of interfacial interactions on the mechanical properties of 2DLMs, and suggest that importance should be also attached to the interlayer interactions during the design of nanodevices with 2DLMs as the functional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.