Abstract

Nanotransfer printing (nTP) technology can generate highly functional three-dimensional (3D) nanostructures in a low-cost and high-throughput fashion. Nevertheless, the fabrication yield and quality of the transferred nanostructures are often limited by the merging of the surface patterns of replica stamps during transfer printing. Here, an nTP technology was developed to fabricate large-area and crack-free 3D multilayer nanostructures. Instead of directly depositing materials on the patterned flexible stamp in conventional nTPs, we transferred the nanostructures straightforwardly onto an attached polydimethylsiloxane slab by removing a sacrificial water-soluble poly(acrylic acid) film, which can avoid the cracking of metal film and the failures of printing nanostructures onto target substrates. Based on this approach, subwavelength-thick polarization rotators working at infrared wavelengths were fabricated. Excellent performance of linear polarization rotation over a broadband was realized. This nTP approach could complement existing fabrication techniques and benefit the development of various functional nanostructures with complex multilayer hierarchies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.