Abstract

An electroswitchable and tunable biofuel cell based on the biocatalyzed oxidation of glucose is described. The anode consists of a Cu(2+)-poly(acrylic acid) film on which the redox-relay pyrroloquinoline quinone (PQQ) and the flavin adenine dinucleotide (FAD) cofactor are covalently linked. Apo-glucose oxidase is reconstituted on the FAD sites to yield the glucose oxidase (GOx)-functionalized electrode. The cathode consists of a Cu(2+)-poly(acrylic acid) film that provides the functional interface for the covalent linkage of cytochrome c (Cyt c) that is further linked to cytochrome oxidase (COx). Electrochemical reduction of the Cu(2+)-poly(acrylic acid) films (applied potential -0.5 V vs SCE) associated with the anode and cathode yields the conductive Cu(0)-poly(acrylic acid) matrixes that electrically contact the GOx-electrode and the COx/Cyt c-electrode, respectively. The short-circuit current and open-circuit voltage of the biofuel cell correspond to 105 microA (current density ca. 550 microA cm(-2)) and 120 mV, respectively, and the maximum extracted power from the cell is 4.3 microW at an external loading resistance of 1 kOmega. The electrochemical oxidation of the polymer films associated with the electrodes (applied potential 0.5 V) yields the nonconductive Cu(2+)-poly(acrylic acid) films that completely block the biofuel cell operation. By the cyclic electrochemical reduction and oxidation of the polymer films associated with the anode and cathode between the Cu(0)-poly(acrylic acid) and Cu(2+)-poly(acrylic acid) states, the biofuel cell performance is reversibly switched between "ON" and "OFF" states, respectively. The electrochemical reduction of the Cu(2+)-polymer film to the Cu(0)-polymer film is a slow process (ca. 1000 s) because the formation and aggregation of the Cu(0)-clusters requires the migration of Cu(2+) ions in the polymer film and their reduction at conductive sites. The slow reduction of the Cu(2+)-polymer films allows for the controlling of the content of conductive domains in the films and the tuning of the output power of the biofuel cell. The electron-transfer resistances of the cathodic and anodic processes were characterized by impedance spectroscopy. Also, the overall resistances of the biofuel cell generated by the time-dependent electrochemical reduction process were followed by impedance spectroscopy and correlated with the internal resistances of the cell upon its operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.