Abstract

Modern technologies like quantum and cloud computing have reshaped computing, offering immense power and scalability. While beneficial, they also challenge the security of traditional cryptographic systems. Quantum computing threatens RSA and ECC with algorithms like Shor’s algorithm, which can accelerate computations exponentially. This risks exposing these systems to attacks, necessitating quantum-resistant cryptography. Cloud computing poses data security concerns, requiring robust cryptographic mechanisms and access controls. Lattice-based cryptography, leveraging problems like the Short Integer Solution (SIS), emerges as a solution. This paper presents a novel quantum-resistant public key encryption scheme based on ElGamal and SIS, ensuring security against quantum and classical threats in modern cryptographic environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.