Abstract

In the era of cloud computing, guaranteeing the safety and effectiveness of data management is of utmost importance. This investigation presents a novel approach that amalgamates the sharding concept, encryption, zero-knowledge proofs (zkp), and blockchain technology for secure data retrieval and data access control to improve data security, efficiency in cloud storage and migration. Further, we utilize user-specific digital wallets for secure encryption keys in order to encrypt the file before storing into the cloud. As Large files (greater than 50 MB) or Big data files (greater than 1 TB) require greater computational complexity, we leverage the sharding concept to enhance both space and time complexity in cloud storage. Hence, the large files are divided into shards and stored in different database servers. We also employ a blockchain smart contract to enhance secure retrieval of the file and also a secure access method, which ensures the privacy of the user. The zk-snark protocol is utilized to ensure the safe transfer of data between different cloud services. By utilizing this approach, data privacy is preserved, as only the proof of the data’s authenticity is shared with the verifier at the destination cloud, rather than the actual data themselves. The suggested method tackles important concerns related to data protection, privacy, and efficient resource utilization in cloud computing settings by ensuring it meets all the cloud policies required to store data. Since the environment maintains the privacy of the user data and the raw data of the user is not stored anywhere, the entire environment is set up as a Zero trust model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.