Abstract
We obtain the lattice wave solution and the dispersion relation of the lattice vibration equation of the two identical coupled Frenkel-Kontorova (FK) chains, and we study the lattice vibration characteristics of the coupled FK chains. The results show that the dispersion relation of coupled FK chain contains an acoustic branch and an optical branch. The spectral range and frequency band gap are related to the coefficient of restoring force of each chain and the inter-chain coupling strength, and it is also related to the depth of the on-site potential for the low temperature case and finite temperature case. Moreover, it is found that there is no frequency band gap for weak inter-chain coupling. The frequency gap appears when the inter-chain coupling strength exceeds a critical value, and the frequency band gap will become bigger with the inter-chain interaction increasing. This is because the optical branch moves towards high frequency region with the inter-chain coupling increasing. We also find that the critical inter-chain coupling strength of frequency band gap is always twice the restoring force coefficient of FK chain, and it does not depend on temperature. In addition, we study the effect of temperature on the dispersion relationship of coupled FK chain with a fixed inter-chain coupling strength. These results provide a theoretical basis for analyzing the effects of inter-chain coupling and temperature on the vibrational characteristics and physical properties of lattice, and thus providing an important guide for the energy transport, thermal management and other practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.